Parallelism Increases Iterative Learning Power

نویسندگان

  • John Case
  • Samuel E. Moelius
چکیده

Iterative learning (It-learning) is a Gold-style learning model in which each of a learner’s output conjectures may depend only upon the learner’s current conjecture and the current input element. Two extensions of the It-learning model are considered, each of which involves parallelism. The first is to run, in parallel, distinct instantiations of a single learner on each input element. The second is to run, in parallel, n individual learners incorporating the first extension, and to allow the n learners to communicate their results. In most contexts, parallelism is only a means of improving efficiency. However, as shown herein, learners incorporating the first extension aremore powerful than It-learners, and, collective learners resulting from the second extension increase in learning power as n increases. Attention is paid to how one would actually implement a learner incorporating each extension. Parallelism is the underlying mechanism employed. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Learning from Positive Data

The present paper deals with a systematic study of incremental learning algorithms. The general scenario is as follows. Let c be any concept; then every innnite sequence of elements exhausting c is called positive presentation of c. An algorith-mic learner successively takes as input one element of a positive presentation as well as its previously made hypothesis at a time, and outputs a new hy...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

DSL-based Design Space Exploration for Temporal and Spatial Parallelism of Custom Stream Computing

Stream computation is one of the approaches suitable for FPGA-based custom computing due to its high throughput capability brought by pipelining with regular memory access. To increase performance of iterative stream computation, we can exploit both temporal and spatial parallelism by deepening and duplicating pipelines, respectively. However, the performance is constrained by several factors i...

متن کامل

Iterative Learning Control of Power Flow Calculation

The paper analyzes the flow calculation of power system, using iterative learning algorithm to calculation the power flow, compare with traditional improving Newton etc. algorithm, Iterative learning algorithm has fast convergence can also be to achieve a high precision tracking. In this paper convergence of the algorithm is global, and gives control of the convergence conditions and rigorous t...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007