Parallelism Increases Iterative Learning Power
نویسندگان
چکیده
Iterative learning (It-learning) is a Gold-style learning model in which each of a learner’s output conjectures may depend only upon the learner’s current conjecture and the current input element. Two extensions of the It-learning model are considered, each of which involves parallelism. The first is to run, in parallel, distinct instantiations of a single learner on each input element. The second is to run, in parallel, n individual learners incorporating the first extension, and to allow the n learners to communicate their results. In most contexts, parallelism is only a means of improving efficiency. However, as shown herein, learners incorporating the first extension aremore powerful than It-learners, and, collective learners resulting from the second extension increase in learning power as n increases. Attention is paid to how one would actually implement a learner incorporating each extension. Parallelism is the underlying mechanism employed. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Incremental Learning from Positive Data
The present paper deals with a systematic study of incremental learning algorithms. The general scenario is as follows. Let c be any concept; then every innnite sequence of elements exhausting c is called positive presentation of c. An algorith-mic learner successively takes as input one element of a positive presentation as well as its previously made hypothesis at a time, and outputs a new hy...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملDSL-based Design Space Exploration for Temporal and Spatial Parallelism of Custom Stream Computing
Stream computation is one of the approaches suitable for FPGA-based custom computing due to its high throughput capability brought by pipelining with regular memory access. To increase performance of iterative stream computation, we can exploit both temporal and spatial parallelism by deepening and duplicating pipelines, respectively. However, the performance is constrained by several factors i...
متن کاملIterative Learning Control of Power Flow Calculation
The paper analyzes the flow calculation of power system, using iterative learning algorithm to calculation the power flow, compare with traditional improving Newton etc. algorithm, Iterative learning algorithm has fast convergence can also be to achieve a high precision tracking. In this paper convergence of the algorithm is global, and gives control of the convergence conditions and rigorous t...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کامل